Detail View: NASA Image eXchange Collection: X-31 in Banked Flight over Edwards AFB

Title: 
X-31 in Banked Flight over Edwards AFB
Description: 
One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, turns tightly over the desert floor on a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the "Herbst Maneuver" after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a "J Turn" when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included
Date: 
01.01.1994
Credit: 
NASA Dryden Flight Research Center (NASA-DFRC) [ http://www.dfrc.nasa.gov/gallery/ ]
facet_what: 
AGILE
facet_where: 
California
facet_when: 
01-01-1994
facet_when_year: 
1992
Media: 
IMAGE
UID: 
SPD-NIX-EC94-42478-13
original url: 
http://nix.ksc.nasa.gov/info?id=EC94-42478-13&orgid=7